3.3.43 \(\int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx\) [243]

3.3.43.1 Optimal result
3.3.43.2 Mathematica [A] (verified)
3.3.43.3 Rubi [A] (verified)
3.3.43.4 Maple [B] (verified)
3.3.43.5 Fricas [F]
3.3.43.6 Sympy [F]
3.3.43.7 Maxima [F]
3.3.43.8 Giac [F(-2)]
3.3.43.9 Mupad [F(-1)]

3.3.43.1 Optimal result

Integrand size = 29, antiderivative size = 319 \[ \int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx=-\frac {b^2 c^2 \left (1-c^2 x^2\right )}{3 x \sqrt {d-c^2 d x^2}}-\frac {b c \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {2 i c^3 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}-\frac {2 c^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x}+\frac {4 b c^3 \sqrt {1-c^2 x^2} (a+b \arcsin (c x)) \log \left (1-e^{2 i \arcsin (c x)}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 c^3 \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,e^{2 i \arcsin (c x)}\right )}{3 \sqrt {d-c^2 d x^2}} \]

output
-1/3*b^2*c^2*(-c^2*x^2+1)/x/(-c^2*d*x^2+d)^(1/2)-1/3*b*c*(a+b*arcsin(c*x)) 
*(-c^2*x^2+1)^(1/2)/x^2/(-c^2*d*x^2+d)^(1/2)-2/3*I*c^3*(a+b*arcsin(c*x))^2 
*(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)+4/3*b*c^3*(a+b*arcsin(c*x))*ln(1- 
(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-2/3* 
I*b^2*c^3*polylog(2,(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-c^2*x^2+1)^(1/2)/(-c^2 
*d*x^2+d)^(1/2)-1/3*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/d/x^3-2/3*c^2 
*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/d/x
 
3.3.43.2 Mathematica [A] (verified)

Time = 0.76 (sec) , antiderivative size = 269, normalized size of antiderivative = 0.84 \[ \int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx=-\frac {\sqrt {1-c^2 x^2} \left (a b c x+a^2 \sqrt {1-c^2 x^2}+2 a^2 c^2 x^2 \sqrt {1-c^2 x^2}+b^2 c^2 x^2 \sqrt {1-c^2 x^2}+b^2 \left (2 i c^3 x^3+\sqrt {1-c^2 x^2}+2 c^2 x^2 \sqrt {1-c^2 x^2}\right ) \arcsin (c x)^2-b \arcsin (c x) \left (-b c x-2 a \sqrt {1-c^2 x^2} \left (1+2 c^2 x^2\right )+4 b c^3 x^3 \log \left (1-e^{2 i \arcsin (c x)}\right )\right )-4 a b c^3 x^3 \log (c x)+2 i b^2 c^3 x^3 \operatorname {PolyLog}\left (2,e^{2 i \arcsin (c x)}\right )\right )}{3 x^3 \sqrt {d-c^2 d x^2}} \]

input
Integrate[(a + b*ArcSin[c*x])^2/(x^4*Sqrt[d - c^2*d*x^2]),x]
 
output
-1/3*(Sqrt[1 - c^2*x^2]*(a*b*c*x + a^2*Sqrt[1 - c^2*x^2] + 2*a^2*c^2*x^2*S 
qrt[1 - c^2*x^2] + b^2*c^2*x^2*Sqrt[1 - c^2*x^2] + b^2*((2*I)*c^3*x^3 + Sq 
rt[1 - c^2*x^2] + 2*c^2*x^2*Sqrt[1 - c^2*x^2])*ArcSin[c*x]^2 - b*ArcSin[c* 
x]*(-(b*c*x) - 2*a*Sqrt[1 - c^2*x^2]*(1 + 2*c^2*x^2) + 4*b*c^3*x^3*Log[1 - 
 E^((2*I)*ArcSin[c*x])]) - 4*a*b*c^3*x^3*Log[c*x] + (2*I)*b^2*c^3*x^3*Poly 
Log[2, E^((2*I)*ArcSin[c*x])]))/(x^3*Sqrt[d - c^2*d*x^2])
 
3.3.43.3 Rubi [A] (verified)

Time = 1.20 (sec) , antiderivative size = 255, normalized size of antiderivative = 0.80, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.414, Rules used = {5204, 5138, 242, 5186, 5136, 3042, 25, 4200, 25, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx\)

\(\Big \downarrow \) 5204

\(\displaystyle \frac {2}{3} c^2 \int \frac {(a+b \arcsin (c x))^2}{x^2 \sqrt {d-c^2 d x^2}}dx+\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arcsin (c x)}{x^3}dx}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {2}{3} c^2 \int \frac {(a+b \arcsin (c x))^2}{x^2 \sqrt {d-c^2 d x^2}}dx+\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {1}{2} b c \int \frac {1}{x^2 \sqrt {1-c^2 x^2}}dx-\frac {a+b \arcsin (c x)}{2 x^2}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 242

\(\displaystyle \frac {2}{3} c^2 \int \frac {(a+b \arcsin (c x))^2}{x^2 \sqrt {d-c^2 d x^2}}dx+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 5186

\(\displaystyle \frac {2}{3} c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arcsin (c x)}{x}dx}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 5136

\(\displaystyle \frac {2}{3} c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{c x}d\arcsin (c x)}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2}{3} c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int -\left ((a+b \arcsin (c x)) \tan \left (\arcsin (c x)+\frac {\pi }{2}\right )\right )d\arcsin (c x)}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2}{3} c^2 \left (-\frac {2 b c \sqrt {1-c^2 x^2} \int (a+b \arcsin (c x)) \tan \left (\arcsin (c x)+\frac {\pi }{2}\right )d\arcsin (c x)}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 4200

\(\displaystyle \frac {2}{3} c^2 \left (-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}+\frac {2 b c \sqrt {1-c^2 x^2} \left (2 i \int -\frac {e^{2 i \arcsin (c x)} (a+b \arcsin (c x))}{1-e^{2 i \arcsin (c x)}}d\arcsin (c x)-\frac {i (a+b \arcsin (c x))^2}{2 b}\right )}{\sqrt {d-c^2 d x^2}}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2}{3} c^2 \left (-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}+\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 i \int \frac {e^{2 i \arcsin (c x)} (a+b \arcsin (c x))}{1-e^{2 i \arcsin (c x)}}d\arcsin (c x)-\frac {i (a+b \arcsin (c x))^2}{2 b}\right )}{\sqrt {d-c^2 d x^2}}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {2}{3} c^2 \left (-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}+\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))-\frac {1}{2} i b \int \log \left (1-e^{2 i \arcsin (c x)}\right )d\arcsin (c x)\right )-\frac {i (a+b \arcsin (c x))^2}{2 b}\right )}{\sqrt {d-c^2 d x^2}}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {2}{3} c^2 \left (-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}+\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))-\frac {1}{4} b \int e^{-2 i \arcsin (c x)} \log \left (1-e^{2 i \arcsin (c x)}\right )de^{2 i \arcsin (c x)}\right )-\frac {i (a+b \arcsin (c x))^2}{2 b}\right )}{\sqrt {d-c^2 d x^2}}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {2}{3} c^2 \left (-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{d x}+\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arcsin (c x)}\right )\right )-\frac {i (a+b \arcsin (c x))^2}{2 b}\right )}{\sqrt {d-c^2 d x^2}}\right )+\frac {2 b c \sqrt {1-c^2 x^2} \left (-\frac {a+b \arcsin (c x)}{2 x^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 x}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 d x^3}\)

input
Int[(a + b*ArcSin[c*x])^2/(x^4*Sqrt[d - c^2*d*x^2]),x]
 
output
-1/3*(Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(d*x^3) + (2*b*c*Sqrt[1 - 
 c^2*x^2]*(-1/2*(b*c*Sqrt[1 - c^2*x^2])/x - (a + b*ArcSin[c*x])/(2*x^2)))/ 
(3*Sqrt[d - c^2*d*x^2]) + (2*c^2*(-((Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x 
])^2)/(d*x)) + (2*b*c*Sqrt[1 - c^2*x^2]*(((-1/2*I)*(a + b*ArcSin[c*x])^2)/ 
b - (2*I)*((I/2)*(a + b*ArcSin[c*x])*Log[1 - E^((2*I)*ArcSin[c*x])] + (b*P 
olyLog[2, E^((2*I)*ArcSin[c*x])])/4)))/Sqrt[d - c^2*d*x^2]))/3
 

3.3.43.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 242
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] /; FreeQ[{a, b, c, m, p}, x 
] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4200
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol 
] :> Simp[I*((c + d*x)^(m + 1)/(d*(m + 1))), x] - Simp[2*I   Int[(c + d*x)^ 
m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))), x] 
, x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]
 

rule 5136
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[( 
a + b*x)^n*Cot[x], x], x, ArcSin[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]
 

rule 5138
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5186
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b 
*ArcSin[c*x])^n/(d*f*(m + 1))), x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d + e*x 
^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*A 
rcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^ 
2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
 

rule 5204
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b 
*ArcSin[c*x])^n/(d*f*(m + 1))), x] + (Simp[c^2*((m + 2*p + 3)/(f^2*(m + 1)) 
)   Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] - Simp[b* 
c*(n/(f*(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*( 
1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, 
 c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && ILtQ[m, -1]
 
3.3.43.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2318 vs. \(2 (301 ) = 602\).

Time = 0.26 (sec) , antiderivative size = 2319, normalized size of antiderivative = 7.27

method result size
default \(\text {Expression too large to display}\) \(2319\)
parts \(\text {Expression too large to display}\) \(2319\)

input
int((a+b*arcsin(c*x))^2/x^4/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)
 
output
-4/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^3*(-c^2*x^2+ 
1)*arcsin(c*x)*c^6-2*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/ 
d*x^2*(-c^2*x^2+1)^(1/2)*arcsin(c*x)^2*c^5-2/3*I*b^2*(-d*(c^2*x^2-1))^(1/2 
)/(3*c^4*x^4-2*c^2*x^2-1)/d*x*(-c^2*x^2+1)*arcsin(c*x)*c^4+a*b*(-d*(c^2*x^ 
2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*c^3*(-c^2*x^2+1)^(1/2)+2/3*a*b*(-d*( 
c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d/x^3*arcsin(c*x)+4/3*b^2*(-d*(c 
^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d/x*arcsin(c*x)^2*c^2-1/3*I*b^2*( 
-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*(-c^2*x^2+1)^(1/2)*c^3-1/3 
*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^3*c^6+1/3*b^2*(-d* 
(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d/x^3*arcsin(c*x)^2-2/3*b^2*(-d 
*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^5*c^8+a^2*(-1/3/d/x^3*(-c^ 
2*d*x^2+d)^(1/2)-2/3*c^2/d/x*(-c^2*d*x^2+d)^(1/2))-4*I*a*b*(-d*(c^2*x^2-1) 
)^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^2*(-c^2*x^2+1)^(1/2)*arcsin(c*x)*c^5-4 
/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^3*(-c^2*x^2+1) 
*c^6-2/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x*(-c^2*x^ 
2+1)*c^4+8/3*I*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1) 
*arcsin(c*x)*c^3-2/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/ 
d*(-c^2*x^2+1)^(1/2)*arcsin(c*x)^2*c^3-4/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3 
*c^4*x^4-2*c^2*x^2-1)/d*x^5*arcsin(c*x)*c^8+2/3*I*b^2*(-d*(c^2*x^2-1))^(1/ 
2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^3*arcsin(c*x)*c^6-I*b^2*(-d*(c^2*x^2-1))...
 
3.3.43.5 Fricas [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {-c^{2} d x^{2} + d} x^{4}} \,d x } \]

input
integrate((a+b*arcsin(c*x))^2/x^4/(-c^2*d*x^2+d)^(1/2),x, algorithm="frica 
s")
 
output
integral(-sqrt(-c^2*d*x^2 + d)*(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^ 
2)/(c^2*d*x^6 - d*x^4), x)
 
3.3.43.6 Sympy [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx=\int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{x^{4} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

input
integrate((a+b*asin(c*x))**2/x**4/(-c**2*d*x**2+d)**(1/2),x)
 
output
Integral((a + b*asin(c*x))**2/(x**4*sqrt(-d*(c*x - 1)*(c*x + 1))), x)
 
3.3.43.7 Maxima [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {-c^{2} d x^{2} + d} x^{4}} \,d x } \]

input
integrate((a+b*arcsin(c*x))^2/x^4/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxim 
a")
 
output
1/3*(4*c^2*log(x)/sqrt(d) - 1/(sqrt(d)*x^2))*a*b*c - 2/3*a*b*(2*sqrt(-c^2* 
d*x^2 + d)*c^2/(d*x) + sqrt(-c^2*d*x^2 + d)/(d*x^3))*arcsin(c*x) - 1/3*a^2 
*(2*sqrt(-c^2*d*x^2 + d)*c^2/(d*x) + sqrt(-c^2*d*x^2 + d)/(d*x^3)) + b^2*i 
ntegrate(arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2/(sqrt(c*x + 1)*sqrt( 
-c*x + 1)*x^4), x)/sqrt(d)
 
3.3.43.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((a+b*arcsin(c*x))^2/x^4/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac" 
)
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 
3.3.43.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \arcsin (c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx=\int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{x^4\,\sqrt {d-c^2\,d\,x^2}} \,d x \]

input
int((a + b*asin(c*x))^2/(x^4*(d - c^2*d*x^2)^(1/2)),x)
 
output
int((a + b*asin(c*x))^2/(x^4*(d - c^2*d*x^2)^(1/2)), x)